"When are we ever going to use this?"

What is the opposite of boring?

- Interesting
- Compelling
- Engaging
- Thought-provoking

Students want:

Real-life problems

Hands-on problems
Practical applications
To do something valuable

Fig. 1 The McDonald's Prompt served as the genesis for the Notice and Wonder routine.

Marcus went for his daily run. Then he met Samuel at McDonald's for lunch to have hamburgers and milkshakes.

Samuel's Lunch

Marcus's Lunch

NCTM Mathematics Teaching in the Middle School, May 2019

McDonald's nutrition calculator.

Visualpatterns.org

\#2

Pattern \#2, Blocks in step $43=85$

Visualpatterns.org

 \#6

Pattern \#6, Toothpicks in step $43=2838$

Visualpatterns.org \#65

Visualpatterns.org

 \#132

Step1
0 diagonals

Step2
2 diagonals

Step 3
5 diagonals

Step 4 9 diagonals

Describe the
 relationship between the area and mass of a piece of cardboard.

1. Find area of a piece of cardboard.
2. Find mass of cardboard.
3. Graph.
4. Repeat for each piece.
5. Draw line.
6. What is y-intercept?
7. What is the meaning of the y-intercept?
8. What is the slope?
9. Predict the mass for a given area.
10. Draw and cut a piece with that area.
11. Find the actual mass. Does it meet your prediction?
12. Compare the piece you made to a piece your neighbor made. Do the shapes match? What do the shapes have in common?

Increase the challenge:

- Different shapes.
- Use data to predict mass of an entire box. (Requires finding surface area.)
- Graph on a spreadsheet.
- Use spreadsheet to write a formula that accurately predicts mass when given area.
- Start with a piece of cardboard. Graph mass.

Then cut in half and graph mass. Repeat.

- Plotting points
- Area

Topics:

Rates

Measuring
Data collection
Accuracy
Predicting (Interpolation)
Determining equations
Meaning of slope

If using a spreadsheet:

- Scatterplot of class data
- Generating a graph
- Line of best fit
- Correlation
- Using a formula

Volume Height (mL) (cm)

00
10
20
30
40
50
6.1

Short Bottle

Volume (mL)

Volume Height

Tall Bottle

 (cm)(mL) 0
1.7

10
3.4

15
4.9

25
7.7

Volume (mL)

Bottle Comparison

- Short bottle - Tall bottle

$$
\begin{aligned}
V & =\pi r^{2} h \\
\frac{h}{V} & =\frac{1}{\pi r^{2}} \\
\frac{h}{V} & =0.035
\end{aligned}
$$

Volume Height
Narrow Vase
(mL) (cm)
$0 \quad 0$
$40 \quad 3.0$
$80 \quad 4.5$

120	6.2
160	7.9
240	11.0

Volume (mL)

Slope from volume formula is $0.035 \mathrm{~cm} / \mathrm{mL}$ Slope from "rise/run" is $0.040 \mathrm{~cm} / \mathrm{mL}$

$$
\begin{aligned}
V & =r^{2} h \\
\frac{h}{V} & =\frac{1}{r^{2}}
\end{aligned}
$$

Can a similar prediction be made for the slope (h / V) if the container is square?

What would a student need to do in order to demonstrate this relationship?

Cone

Predictions?

What will your students think?

How to measure the height?

Orange Cone

Bud Vase

Predictions?

What will your students

 think?
Bud Vase

- Plotting points
- Determining equation

Topics:

Meaning of slope
Volume
Rates
Measuring
Data collection
Accuracy

- Interpolation

If using a spreadsheet:

- Scatterplot of class data
- Generating a graph
- Line of best fit
- Correlation

Falling Rhythm

https://www.exploratorium.edu/snacks/falling-rhythm

Really only 7 folds?

$$
\mathbf{L}=\frac{\pi \cdot \mathbf{t}}{6} \cdot\left(2^{\mathbf{n}}+4\right)\left(2^{\mathbf{n}}-1\right)
$$

https://www.scienceabc.com/eyeopeners/can-you-really-fold-a-piece-of-paper-only-7-times.html

Inequalities

Directions: Create 5 ordered pairs using the whole digits $0-9$ exactly one time each.

Then, create a linear inequality such that:

1. Two of the ordered pairs are solutions to the linear inequality.
2. Two of the ordered pairs are not solutions to the linear inequality.
3. One of the ordered pairs is on the boundary line but not a solution to the linear inequality.
https://www.openmiddle.com/linear-inequalities-in-two-variables/

Inequalities

Directions: Create 5 ordered pairs using the whole digits $0-9$ exactly one time each.
http://www.graphingstories.com/

